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Abstract— This paper computationally investigates whether
gait asymmetries can be attributed in part to basic bipedal
mechanics independent of motor control. Using a symmetrical
rigid-body model known as the compass-gait biped, we show
that changes in environmental or physiological parameters can
facilitate asymmetry in gait kinetics at fast walking speeds. In
the environmental case, the asymmetric family of high-speed
gaits is in fact more stable than the symmetric family of low-
speed gaits. These simulations suggest that lower extremity me-
chanics might play a direct role in functional and pathological
asymmetries reported in human walking, where velocity may be
a common variable in the emergence and growth of asymmetry.

I. INTRODUCTION

Gait asymmetry is a commonly observed phenomenon
in both impaired [1]–[3] and able-bodied human walking
[4]–[8]. Many methods exist for quantifying or defining
asymmetry between the right and left sides of the human
body, using variables such as stride/step length, joint range
of motion, velocity profiles, and ground reaction forces [9].
However, the underlying causes of these forms of asymmetry
in various populations are still the subject of debate [4].

The hypothesis of functional asymmetry in able-bodied
walking distinguishes the primary role of each leg as vertical
support/control and anterior-posterior (AP) propulsion [7].
These differences have been attributed to leg dominance (see
[4] for a review), whereas asymmetries reported in athletic
race walking are often assumed to be the result of shoe
differences or training on curved tracks [8].

Unilateral deficits observed in stroke gait are thought
to be the manifestation of abnormal co-activation between
muscle groups on the paretic side of the body [10]–[12].
For example, the stereotypical behavior of leg circumduction
has been attributed to torque coupling between hip adduction
and knee extension [10], [11]. Asymmetries also result from
apparent bilateral impairments, a common example being
cerebral palsy [3]. Gait symmetry and speed are common
outcome metrics in clinical rehabilitation, but symmetry has
not been shown to enable faster walking for stroke subjects
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[1]. In fact, variables for asymmetry are highly correlated
with speed in hemiparetic stroke gait, where asymmetric
leg motion accompanies increases in stride length/velocity
[1]. Attempts at enforcing symmetry using an orthosis to
induce knee flexion have resulted in new asymmetries such as
exaggerated frontal-plane motion from hip adductor coupling
[2]. The underlying mechanisms behind gait asymmetry must
be understood in order to effectively treat such deficits.

In the context of robot walking, asymmetries naturally
arise in computational simulations of symmetrical “passive
walking” models that use only momentum and gravity to
propel forward motion down a shallow slope [13]. Although
the dynamical equations of motion may yield a stable so-
lution corresponding to a symmetric walking gait, varying
model parameters may cause a structural instability at a
bifurcation point, after which a new (stable) asymmetric
solution emerges from the (unstable) symmetric solution. The
symmetrical mechanics of these walking machines admit two
families of solutions, one symmetric and one asymmetric.

This paper examines previously unaddressed kinetic and
stability variables in the planar compass-gait biped to better
understand the cause, function, and benefit of gait asym-
metry. We show that changes in both environmental and
physiological parameters naturally facilitate the emergence
and growth of asymmetry in gait energy, impact dissipation,
and ground reaction forces. We find that walking speed
is a common variable in both parametric cases, where the
symmetric family of walking gaits is stable at low speeds and
the asymmetric family is stable at high speeds. These results
show that asymmetric gaits can be beneficial for stability and
efficiency and suggest that lower extremity mechanics might
play a direct role in functional and pathological asymmetries
previously observed in human walking.

We begin by describing our simple computational model
of bipedal walking in Section II. This model is simulated
in Section III to show the evolution of its walking gait
when varying an environmental parameter and a physiolog-
ical parameter. We offer interpretations of these results in
the context of able-bodied and impaired human walking in
Section IV and provide closing remarks in Section V.

II. THE COMPASS-GAIT BIPED MODEL

The planar compass-gait biped of Fig. 1 has point feet
that coincide with the ankle joints. This simple model’s 2-
DOF configuration is given by the vector θ = (θs, θns) in the
configuration space Q = T2, representing the stance angle at
the ankle and the non-stance/swing angle at the hip.

The single-support phase dynamics are represented by the
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Fig. 1. Model diagram for the planar compass-gait biped.

continuous 2nd-order differential equation

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ) = τ, (1)

where M is the n× n mass/inertia matrix, n× n-matrix C
contains the Coriolis/centrifugal terms, N is the vector of
potential torques, and τ is the vector of torque inputs. These
matrices are given symbolically by

M(θ) =

(
`2

4 (5m+ 4mh) − `
2m
2 cos(θs − θns)

− `
2m
2 cos(θs − θns) `2m

4

)

C(θ, θ̇) =
`2m

2

(
0 −θ̇ns sin(θs − θns)

θ̇s sin(θs − θns) 0

)
N(θ) =

(
−g`(3m+ 2mh) sin(θs)/2

g`m sin(θns)/2

)
.

We choose human-like parameters, grouping the trunk
masses at the hip: mh = 31.73 kg, m = 13.5 kg, and
` = 0.856 m. The total mass is Mtot = 58.73 kg.

The continuous-time single-support phase is defined by
constraint h(θ) ≥ 0, where scalar

h(θ) = `((cos(θs)− cos(θns)) + (sin(θs)− sin(θns)) tan(γ))

gives the height of the swing foot above ground with slope
angle γ. The instantaneous impact event from foot-ground
strike is indicated by the guard condition/switching surface1

G = {(θ, θ̇)|h(θ) = 0, ḣ = (∇θh)θ̇ < 0} ⊂ TQ.

We model these impulsive events as perfectly plastic (in-
elastic) collisions, so any solution trajectory intersecting the
ground plane is subjected to the discontinuous impact map
∆ : G→ TQ. Thus, we have the impulsive dynamical system

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ) = τ for (θ, θ̇) /∈ G
(θ+, θ̇+) = ∆(θ−, θ̇−) for (θ−, θ̇−) ∈ G.

For brevity we defer the details regarding map ∆ to [13].

1This model does not have knees to provide ground clearance of the
swing foot, so we add the constraint ḣ < 0 to the condition h = 0 to
disallow impact events associated with mid-swing scuffing [14].

Bipedal walking gaits correspond to solutions x(t) =
(θ(t), θ̇(t)) of the above system that are periodic, i.e., x(t) =
x(t + T ) for some T > 0 and all t. These solutions define
isolated orbits in state space known as hybrid limit cycles,
which correspond to equilibria of the Poincaré return map
P : G → G. The return map represents an impulsive
dynamical system as a discrete-time system between impact
events, sending state xj ∈ G ahead one step by the discrete
system xj+1 = P (xj). A symmetric periodic solution x(t)
has a fixed point x∗ ∈ G such that x∗ = P (x∗). A periodic
solution that is asymmetric has a period greater than one,
i.e., x∗ 6= P (x∗), requiring multiple compositions of the
return map to find a fixed point x∗ = P k(x∗), for k > 1.
In the case of 3D bipeds with bilateral symmetry about the
sagittal plane, asymmetric gaits are those with consecutive
step cycles that are not the mirror image of the other.

Although we cannot analytically calculate the return map,
we can verify orbital stability from k-step fixed point x∗, k ≥
1, by approximating the linearized map ∇xP k(x∗) through
simulation [13]. This yields a discrete linear system that is
exponentially stable if and only if the complex eigenvalues of
∇xP k(x∗) are strictly within the unit circle (absolute values
are less than one). An unstable solution also corresponds
to cyclic walking, but any perturbation causes permanent
deviation from the nominal trajectory (e.g., falling).

III. SIMULATION RESULTS

Biped mechanics in this modeling construct admit a sym-
metric and asymmetric family of gaits depending on certain
types of parameters [13]. We will examine how gait kinetics
change between the families of solutions parameterized by
the environmental ground slope and the physiological mass
distribution between the hip and legs.

A. Varying an Environmental Parameter

A biped is said to be passive when propelled solely
by ballistic momentum and gravity, without applying any
control torques, i.e., τ = 0 in (1). Passive walking gaits
arise from a balanced exchange between potential energy
introduced on an inclined slope and kinetic energy dissipated
at impact. When walking passively down a shallow slope, the
planar compass-gait biped may fall into one of two cyclic
gaits, one stable and one unstable [13], [15].

For a range of moderate slope angles, the steady-state gait
is symmetric and stable, repeating exactly every step cycle.
The symmetric gait becomes unstable on large slopes beyond
a bifurcation point at slope γ = 0.073 rad, splitting into
a stable asymmetric gait. These gaits are cyclic every two
steps with one long stride and one short stride, which is
stereotypical of unilateral impairments. We then observe 4-
step asymmetric gaits after the second bifurcation point at
γ = 0.0843 rad. Our simulations no longer exhibit cyclic
behavior beyond 0.0853 rad.

This period-doubling behavior is illustrated by bifurcation
diagrams in which the steady-state evolution of so-called
“gait descriptors” (variables of the steady gait) is shown over
the range of slopes. Gait descriptors of stable solutions are
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Fig. 2. Passive steady-state step velocity (left) and impact energy dissipation (right) over slope angle. Solution is solid if stable and dotted if unstable.
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Fig. 3. Passive steady-state vertical GRF impulse (left) and anterior-posterior GRF impulse (right) over slope angle. Step cycle impulses are calculated
by integrating the GRF vector (over the entire step period for vertical, after midstance for AP) and normalizing by Mtotg
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Fig. 4. Passive steady-state gait energy over linear velocity (left) and maximum absolute eigenvalue over slope angle (right). For the sake of comparison
between families of solutions, eigenvalues are calculated with the period-4 return map.
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given in solid lines and (approximate) unstable solutions in
dashed lines, where asymmetric solutions have two or more
branches showing the descriptor for each step cycle in the
gait. We see in Fig. 2 that step velocity and impact energy
dissipation of the symmetric gait evolve monotonically with
slope, and the same holds for the asymmetric descriptors
averaged over the gait cycle. This trend is also true of total
mechanical energy at the end of each step cycle. Integrating
the ground reaction forces (GRF) for each step cycle, we
find in Fig. 3 that the AP impulse (midstance to foot strike)
follows a monotonic trend whereas the vertical impulse of the
symmetric solution remains close to constant. We interpret
the function of these relationships in Section IV.

The eigenvalues of the return map between steps character-
ize a mathematically meaningful definition of gait stability.
In fact, the maximum absolute eigenvalue is an inverse
scale for stability between zero and one: a smaller value
implies faster attenuation of perturbations in some local
region around the nominal joint trajectory. We find in Fig.
4 that some asymmetric gaits after the bifurcation point are
more stable than symmetric gaits before the bifurcation point
(e.g., maximum absolute eigenvalue of 0.061 at 0.083 rad
versus 0.09 at 0.066 rad). The maximum absolute eigenvalue
of the 4-step asymmetric gait also drops significantly after
the 2-step gait becomes unstable at the second bifurcation
point. We see that there are multiple local stability minima
within the range of walking gaits, where in this case the
global minima resides in the 2-step asymmetric family.

Similar behavior for passive hopping models was observed
in [16], where some asymmetric gaits appeared to have larger
regions of attraction than symmetric gaits. This phenomenon
can be explained by the presence of multiple orbital branches
in the asymmetric solution, by which these gaits can occupy
greater volume in the state space.

B. Varying a Physiological Parameter

We now consider a controlled case of walking on flat
ground when varying a physiological parameter correspond-
ing to the biped’s mass distribution. We first produce walking
using a control law that virtually rotates the gravity vector
to map a passive downhill gait to a “pseudo-passive” gait
on level ground [17]. Letting total mass M be fixed, we
vary distribution parameter µ = mh/m corresponding to hip
mass mh = µM/(2 + µ) and leg mass m = M/(2 + µ).
This bifurcation parameter was originally studied in [13].

We find that the symmetric gait is stable as we increase the
mass ratio from µ = 2.35 until µ = 12.35, at which point
the symmetric gait becomes unstable and bifurcates into a
stable asymmetric gait. The bifurcation diagrams for gait
descriptors of vertical and AP impulses are given in Fig. 6,
showing that vertical impulse differs substantial between legs
whereas AP impulse does not (see [13] for other descriptors).
The period-two asymmetric gait appears to remain stable
in the limit as µ → ∞. Upon inspection of the maximum
absolute eigenvalue in Fig. 7, we find that in this case the
symmetric family of solutions is locally more stable than

the asymmetric family. However, this might not be the case
when comparing volumes of the regions of attraction.

Varying µ in the opposite direction (decreasing to zero),
the symmetric solution exhibits a different period-doubling
bifurcation at µ = 0.025, which is not shown in the above
figures due to its smaller scale. This family of asymmetric
gaits corresponds to walking speeds less than 0.564 m/s,
which may be more representative of stroke pathology than
the high-speed family of asymmetric gaits. In summary, the
biped mechanics facilitate symmetry for a middle range of
walking speeds and asymmetry in the extremes.

IV. DISCUSSION

Although the simple model of Section II neglects many of
the complexities of human locomotion, the period-doubling
behavior observed in Section III is a generic manifestation
of structural instabilities in discrete or impulsive dynamical
systems [18]. Bifurcations have been observed in kneed
models [19] and three-dimensional models that include stabi-
lizing functions outside the sagittal plane [20]. Even different
forms of locomotion such as hopping [18], [21] and climbing
[22] exhibit this behavior. Therefore, the simulations of our
simple biped mechanics offer some meaningful observations.

A. Asymmetry and Causality

The simulations of Section III show that both environmen-
tal and physiological parameters can directly cause asymme-
try to emerge from bipedal mechanics. However, it would
be useful to determine if a single unifying variable is likely
responsible for both bifurcation cases.

We notice common monotonically increasing (one-to-one)
relationships between bifurcation parameters and the gait
descriptors of step length, velocity, and energy. In the case
of slope variation, the first bifurcation point corresponds
to a step length of 0.522 m, velocity of 0.742 m/s, and
energy of 398.1 J. The first bifurcation point in the mass
ratio case corresponds to a step length of 0.563 m, velocity
of 0.746 m/s, and energy of 482.2 J. Both cases bifurcate
at approximately the same linear velocity, suggesting that
walking speed plays a fundamental role in the emergence of
asymmetry. This could explain the experimentally observed
correlations between asymmetry and walking speed in both
pathological [1] and able-bodied [7] studies. However, a
causal relationship is difficult to prove because multi-period
solutions to nonlinear hybrid dynamics generally cannot be
solved analytically, even when further simplification yields
an analytical return map [15].

We therefore plot linear velocity against the gait descriptor
of total energy in Figs. 4 and 7. We again see a monotonically
increasing relationship for the symmetric solution. COM
energy appears to increase proportionally to the square of
COM velocity and inner-leg angle as we would expect from
[23]. Asymmetry may be a natural way for the body mechan-
ics to compensate for an excess of energy at fast walking
speeds, where long strides perform a propulsion/accelerating
function and short strides perform a support/control function.
We now explore this concept of functional asymmetry.
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between families of solutions, eigenvalues are calculated with the period-2 return map.

B. Interpretations for Able-Bodied Gait

Asymmetry in able-bodied human walking has been at-
tributed to differing biomechanical functions of the legs,
where one leg contributes more to propulsion and the other
is mainly responsible for body-weight support/transfer and
motion control [4]–[7]. This is supported by the asymmetric
family of solutions in Figs. 2, 3, and 6, where each leg con-
tributes different impulses per step cycle and dissipates dif-
ferent energy at double-support transitions. These functions
are manifested in the reaction forces as seen in the passive
asymmetric gait of Fig. 5. The first stance phase provides
support with a vertical impulse 15% greater than the second,
whereas the second stance phase performs propulsion with an
AP impulse 14.3% greater than the first. However, the only
functional difference observed in the physiological case of
Fig. 6 is in vertical impulse, suggesting that these roles need
not be mutually exclusive (reaffirming observations in [7]).

Passive walking requires no energy contribution from
the biped, so the existence of passive asymmetric gaits
shows that asymmetry can be very energetically efficient.
For walking speeds beyond the first bifurcation point (Figs.
4 and 7), the asymmetric solution is trivially more stable than
the unstable symmetric solution. Both correspond to cyclic
walking motion, but the biped can employ the asymmetric
gait at no cost, allowing the lower extremity mechanics
to naturally attenuate perturbations. Walking symmetrically

at the same speeds requires active stabilization from the
motor control system, which must apply torques at some
cost to counteract destabilizing perturbations. The maximum
eigenvalue plots similarly show that high-speed asymmetric
gaits can be more stable than low-speed symmetric gaits
under certain physical and environmental conditions.

If these characteristics indeed hold for human walking,
asymmetries observed in able-bodied studies might be ex-
plained in part by humans self-selecting walking speed to
maximize stability and/or efficiency. The leg corresponding
to each biomechanical function may relate to limb domi-
nance, but debate still surrounds the underlying reasons for
this motor control strategy [4], [9]. Our simulations suggest
that this walking strategy is dynamically beneficial for sta-
bility and efficiency, and human neurophysiology might have
developed to exploit this fact.

However, healthy motor control systems appear to limit
or delay the emergence of asymmetry as walking speed
increases. A study on able-bodied children and young adults
did not find any noticeable changes in kinematic and tem-
poral symmetry variables as a function of age or walking
speed [24]. The functional asymmetry hypothesis was tested
in [7] and asymmetry was observed in AP impulses only
during fast walking. The motor control system may enforce
symmetry in all but the most challenging tasks for more than
aesthetic reasons – unbalanced strain on joints and muscles
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over time can lead to musculoskeletal deterioration [9].

C. Interpretations for Pathological Gait

The basic mechanics of the lower limb apparatus may also
play a role in gait asymmetries observed after impairment.
The range of physiological parameters examined in Section
III-B can be interpreted as a range of bilateral impairments
(e.g., abnormal mass distributions associated with prosthetic
legs). These simulations suggest that an impairment may al-
ter the biomechanics in such a way that abnormal asymmetry
improves stability and efficiency and enables faster walking.

A neurological impairment such as stroke2 corresponds
to a state change in the motor control system. This change
might render the asymmetric family of solutions more op-
timal than the symmetric family (e.g., Fig. 4), pushing the
biomechanics toward asymmetric behavior. If we assume that
healthy motor control systems prevent the natural growth of
asymmetry, this state change might instead render the motor
control system unable to compensate for the tendency of
biped mechanics to facilitate asymmetry. A third possibility
is that impaired biomechanics admit an entirely different
family of asymmetric gaits from that of able-bodied walking.
Further studies are needed to determine which of these
pathophysiologies is most likely.

V. CONCLUSIONS

We examined the kinetic properties of biped mechan-
ics to investigate why asymmetry, whether functional or
pathological, commonly appears in human locomotion. Our
computational evidence suggests that environmental and
physiological changes can cause gait asymmetry, even when
the biomechanics remain perfectly symmetric. Walking speed
appears to be a common variable related to the emergence
and growth of asymmetry, where high-speed gaits are natu-
rally asymmetric. Simulation results indicate that asymmetric
gaits can be more stable (and efficient) than symmetric gaits,
and similarly, high-speed gaits can be more stable (and
efficient) than low-speed gaits. These observations suggest
that biped mechanics might play a direct role in facilitating
asymmetry in both able-bodied and impaired walking.

This paper motivates a new line of inquiry into the role
of human motor control in suppressing gait asymmetry.
Bilateral symmetry may be a desirable outcome in locomotor
rehabilitation for aesthetic or musculoskeletal reasons, but we
have found benefits to asymmetry such as improved walking
speed, efficiency, and stability. This suggests a number of
hypotheses for the pathophysiology of abnormal asymmetry,
which may inform treatments to restore symmetry (e.g.,
constraining or challenging the subject’s control system so
the asymmetric family of gaits is no longer optimal). Future
work will investigate these hypotheses with experiments.

2Note that stroke is more appropriately modeled as a unilaterally impaired
model, but asymmetric bipeds can also encounter period-doubling bifurca-
tions [25]. We witnessed period-doubling within the asymmetric family of
gaits in the case of slope variation in Section III-A.
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